EJSM Europa Orbiter Mission Design and Architecture Karla B. Clark Jet Propulsion Laboratory, California Institute of Technology #### Scientific Context - 1995 Galileo begins returning data on Jupiter and its Icy moons - Galileo data is analyzed and augmented with data from Hubble Space Telescope and ground based observations - Some questions are answered, many more are born - Models are created and tested - Some are disproved or refined - Others remain unproven - Hypotheses are developed - Progress is slowed - Only small amounts of new data will become available until another mission visits the system NASA / ESA / UC-Berkeley **Europa-Jupiter System Mission Concept** NASA Jupiter Europa Orbiter The Emergence of Habitable Worlds Around Gas Giants Jupiter System ESA Jupiter Ganymede Orbiter 6/3/08 ## **EJSM Decomposition** The Emergence of Habitable Worlds Around Gas Giants ## **JEO Mission Context** - 1997-2008 5 major NASA efforts and 1 JPL internal study to Europa exploration - Europa Orbiter EO-2001 - Highly resource constrained - ➤ Jupiter Icy Moons Orbiter - Ambitious - Europa Geophysical Explorer - Return to conventional approach - Europa Explorer EE-2006 (JPL Internal) - Resolve challenging technical issues while requiring No New Technology - ➤ Europa Explorer EE-2007 - Peer Review radiation approach - ➤ Jupiter Europa Orbiter JEO-2008 - Find sweet spot Four Science Definition Teams all concluded that an orbiter at Europa is essential for validating the hypotheses and answering the questions # 2008 JEO Mission Concept Concept: Europa Orbiter with Jovian Satellite Tour Launch Vehicle: Atlas V 541 Power Source: 5 MMRTG (531 W EOM) Mission Timeline: Launch: 8/2016 (VEGA) Jupiter arrival: 8/2021 Jovian system tour phase: ~18-24 months Europa orbital phase: 105 days Spacecraft final disposition: Europa surface Impact Instruments: 79 kg, 104 W Radiation Focused Design 6/3/08 # JEO Baseline Interplanetary Trajectory Launch 21 August 2016 DSM (324 m/s) 12 April 2019 Jupiter Orbit Insertion 10 August 2021 ### Representative Science Mission Design Jupiter system science opportunities, prioritized Europa science, and capable flight system enable substantial scientific data return. ## Key Risk: Impact of Radiation and Planetary Protection on Design | Risk Area | Components | Mitigation | Impact | |----------------------|--|--|--| | Radiation | a) Dose rate effects b) Sensor impacts (SNR) c) FPGA qualification d) Non-Volatile Memory capability e) Internal Electrostatic Discharge f) Design techniques | a) Quantify dose rate effects b) Use ASICs in place of FPGAs c) FPGA, memory and sensor radiation testing d) Document and disseminate design techniques and guidelines e) Early subject matter expert engagement | a) Reduced cost risk
and uncertainty | | Planetary Protection | a) Sensor sterilization capability b) Design techniques | a) Document design techniques and guidelinesb) Early subject matter expert engagement | a) Reduced cost risk
and uncertainty | | Instrument Maturity | a) Level of information available for potential providers b) Wide range of experience of potential providers c) Development schedule | a) Document design techniques and guidelines b) Instrument provider workshops - early subject matter expert engagement c) Early and streamlined AO with confirmation review | a) Maximize time instruments can work with experts b) Reduce cost risk and uncertainty at "commitment" | Radiation environment and planetary protection requirements require early and focused attention to mitigate risk ## Radiation Challenge - Europa missions experience significant radiation levels - Beyond any other NASA or ESA mission - Ongoing investment by NASA, ESA, industry and other government agencies has matured technology and developed design approaches to deal with high radiation levels - Risk mitigation starts early - > Parts and materials are available - > Design techniques can be applied - Operational techniques are employed #### A Decade of Investment Has Reduced JEO Risk #### **Current JEO Radiation Task Plan** - Individual items were identified and understood - The phasing of tasks under the plan is driven by the following tentative milestones - Mission Concept Review - Instrument Announcement of Opportunity (AO) - Preliminary Mission and System Review (PMSR) - Preliminary Design Review (PDR) - Priorities are set - Instrument AO preparation material - System engineering leading to PMSR - Engineering design leading up to PDR - Identified activities for FY08 exceed monetary resources - Activities will continue into FY09 | # | Radiation Task | |---|--| | 1 | System Reliability Model | | | Parts & Circuit Models & Validation | | | Systems Element Models & Validation | | 2 | Environment and Shielding Models | | | Environment & Shielding Model | | 3 | Radiation Design & Analysis Methods | | | Tutorials & Guidelines - Environment, Shielding, | | | Parts, Materials, Circuits and Subsystems | | 4 | Sensors and Detectors | | | Science detectors: assessment and testing | | | Engr detectors: assessment and testing | | 5 | Parts Evaluation & Testing | | | Testing strategy including TID, ELDRs | | | Juno parts testing exetension | | | Part/Device testing | | 6 | Approved Parts and Materials | A prioritized plan has been made and is being executed ## Planetary Protection Challenge - End-of-Mission is Europa surface impact - Sterilization is combination of pre- and post- launch sterilization - > Pre-launch: heat, chemical or other type - > Post-launch: external surfaces sterilized by radiation - Some components are particularly concerning - > Certain detectors - Batteries - Protection from re-contamination is essential - Early consideration of approach required for incorporation of requirements into design of components # Instrument Community Engagement - Mission design elements and requirements are being addressed by Project - Instruments would be selected by NASA HQ via Announcement of Opportunity - To enable well understood, low risk proposals - Communicate primary issues - Communicate technology status and options - Document and communicate design mitigation strategies Finding the Sweet Spot - Balance Science Value **6U Cards Shielded Chassis** ## Resources Mass Power **Dollars** Cost Overrun Launch Delay Performance Degradation **Premature Failure**